Основы современных баз данных

       

Оптимизация запросов, управляемая правилами


В лекции 18 мы коротко рассмотрели проблемы оптимизации запросов, которые приходится решать в компиляторах языков баз данных. Возможно, главным выводом, который следовало бы сделать на основе материалов этой лекции, является то, что оптимизатор запросов - это наиболее громоздкий, сложный и критичный компонент СУБД. Все разработчики систем управления базами данных согласны с тем, что на оптимизации запросов экономить нельзя. Чем большее количество вариантов выполнения запроса анализируется и чем более точные оценки стоимости плана выполнения запроса применяются, тем более вероятно, что запрос будет выполнен эффективно.

Главная неприятность, связанная с оптимизаторами запросов, состоит в том, что отсутствует принятая технология их программирования. Обычно оптимизатор представляет собой аморфный набор относительно независимых процедур, которые жестко связаны с другими компонентами компилятора. По этой причине очень трудно менять стратегии оптимизации или качественно их расширять (делать это приходится, поскольку оптимизация вообще и оптимизация запросов, в частности, в принципе является эмпирической дисциплиной, а хорошие эмпирические алгоритмы появляются только со временем).

Каким же образом можно решать эту проблему? Имеются компромиссные решения, не выводящие за пределы традиционной технологии производства компиляторов. В основном все они связаны с применением тех или иных инструментальных средств, обеспечивающих автоматизацию построения компиляторов. Среди них отметим технологию, примененную Ричардом Столлманом в его семействе компиляторов gcc, а также инструментальный пакет Cocktail, разработанный в Германском университете города Карлсруе. Основным производственным достоинством gcc является применение единого языка в качестве средства внутреннего представления программы. Высокоуровневый лиспоподобный язык RTL используется на всех фазах компиляции gcc, что позволяет применять одни и те же преобразующие процедуры на разных стадиях оптимизации программы (вплоть до стадии машинно-зависимых оптимизаций).




В пакете Cocktail обеспечивается набор универсальных, настраиваемых процедур преобразования графов внутреннего представления программы. В некотором смысле Cocktail можно рассматривать как специализированный язык для написания компиляторов (компиляторов любых языков, а не только процедурных языков программирования или декларативных языков баз данных). Как утверждается, Cocktail позволяет повысить производительность труда разработчиков компиляторов в 2-3 раза.

Однако наиболее революционный подход среди известных автору был применен в экспериментальной постреляционной системе компании IBM Starburst. В некотором смысле этот подход является развитием идеи Столлмана, примененной при реализации широко популярного редактора Emacs. Напомним, что в основе этого редактора лежит интерпретатор расширенного диалекта языка Common Lisp. Сам этот интерпретатор написан на языке Си, а основная часть редактора написана на языке Лисп. Это позволяет, среди прочего, добавлять в редактор новые возможности, не покидая его среды: вы просто пишете новый текст на Лиспе и объявляете соответствующую функцию подключенной к редактору.

Система Starburst основана на применении продукционной системы. Эта система является, по существу, виртуальной машиной, в которой выполняются все компоненты СУБД, начиная от компилятора языка баз данных (расширенного варианта языка SQL) и заканчивая подсистемой непосредственного исполнения запросов. Сама СУБД представляет собой набор продукционных правил, каждое из которых вызывается продукционной системой при возникновении соответствующего события и выполняет некоторое действие, которое, в свою очередь, может привести к возникновению события, активизирующего другое правило. Правила представляются на специальном языке. Поддерживается набор предопределенных правил низкого уровня, обеспечивающих интерфейс с подсистемой управления внешней памятью (конечно, по соображениям эффективности эта подсистема написана не на продукционном языке).

Очевидно, что такая организация системы обеспечивает максимальную гибкость.Например, чтобы внедрить в оптимизатор запросов некоторую новую стратегию выполнения (например, расширить применяемый набор методов выполнения эквисоединения) достаточно дополнительно написать одно или несколько новых правил, связанных с событием требования выполнить соединение. Тем самым, Starburst может использоваться (и реально используется в научно-исследовательских лабораториях компании IBM) как мощное и гибкое средство исследования методов оптимизации запросов. Конечно, сомнительно, что технология, положенная в основу Starburst, позволит этой системе конкурировать с такими выполненными в традиционной манере коммерческими СУБД, как DB2, Oracle, Informix и т.д.


Содержание раздела