Очевидный класс логических преобразований запроса составляют преобразования предикатов, входящих в условие выборки, к каноническому представлению. Имеются в виду предикаты, содержащие операции сравнения простых значений. Такой предикат имеет вид "арифметическое выражение op арифметическое выражение", где "op" - операция сравнения, а арифметические выражения левой и правой частей в общем случае содержат имена полей отношений и константы (в языке SQL среди констант могут встречаться и имена переменных объемлющей программы, значения которых становятся известными только при реальном выполнении запроса).
Канонические представления могут быть различными для предикатов разных типов. Если предикат включает только одно имя поля, то его каноническое представление может, например, иметь вид "имя поля op константное арифметическое выражение" (эта форма предиката - простой предикат селекции - очень полезна при выполнении следующего этапа оптимизации). Если начальное представление предиката имеет вид (a+5)(A op 36 (малыми буквами обозначены имена объемлющих переменных, а большими - имена полей отношений), то каноническим представлением такого предиката может быть A op 36/(a+5).
Если предикат включает в точности два имени поля разных отношений (или двух разных вхождений одного отношения), то его каноническое представление может иметь вид "имя поля op арифметическое выражение", где арифметическое выражение в правой части включает только константы и второе имя поля (это тоже форма, полезная для выполнения следующего шага оптимизации, - предикат соединения; особенно важен случай эквисоединения, когда op - это равенство). Если в начальном представлении предикат имеет вид 5(A-a(B op b, то его каноническое представление - A op (b+a(B)/5.
Наконец, для рассматриваемых предикатов более общего вида имеет смысл приведение предиката к каноническому представлению вида "арифметическое выражение op константное арифметическое выражение", где выражения правой и левой частей также приведены к каноническому представлению; например, в выражениях полностью раскрыты скобки и произведено лексикографическое упорядочение.